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The panty-v~olatmg part of the one-loop effectwe actton of scalar superflelds m parlty-mvarmnt three-d~mensmnal 
supersymmetrlc gauge theories is exphcltly found by means of the superspace heat kernel method Its mterpretatmn as a 
superspace analogue of the Atlyah-Pato&-Smger ~-mvarlant ~s proposed 

1. Parity-violating anomalies (PVA) in gauge theories with massless fermions in odd space-time dimensions D 
(we shall consider euclidean space-time below) were recently widely discussed [ I - 8 ] ,  first, because they are na- 
tural analogues of the usual chiral anomalies in even D, and secondly, due to their close relationship to some in- 
teresting physical phenomena such as fermion number fractionization [3,6] and the quantized Hall effect [6,7]. 
Conditions for occurrence or avoiding of PVA versus dynamical spontaneous breakdown of parity and the depen- 
dence of PVA on the asymptotic behaviour of the gauge field strength at space-time infinity were analyzed in 
ref. [8]. The most concise way of expressing PVA is the following formula first proposed by Polyakov [4] (cf. 
also ref. [5] ) for the loganthm of the determinant of the Dirac operator ~(A) (Nf being the number of fermion 
flavors): 

Nfln det [-i  ~(A)] = Nf 1111 det [72(A)] - Nf½ ilr~7 [A] - NfSct [A l ,  (1) 

lndet[]g2(A)] = / d r r - lTrR[exp  (-r]g2(A))], r/~[A] = / dr(Trr)-l/2TrR[V~(A)exp ( - r~2(A))] .  (2,3) 
0 0 

Def'mition (1) is formally valid for arbitrary self-adjoint operators. Tr R [ ] means the (infrared) regularized oper- 
ator trace defined by subtraction of the corresponding operator at Au = 0. In (1)-(3) and below the following 
notations are used: 

{')'u, "),v)=--26 v, '),; = --'), , ~(A)='yuVta(A)='y,a[~+iA(x)],  

Au = TaAau' {T a) (a = 0,1 ..... n 2 - 1) hermitian generators of U(n), 

Au(x) = - i g - l ( x  ) ( ~ u g ) ( x )  + O(Ix1-1-~) for Ixl ~ 0% x** E S o -1 .  

In (1), (3) r/~ [A] denotes the well-known spectral asymmetry measuring ~/-mvariant [9] of ~(A), where 

~7[A]=(-1)W+I)/2W(ffh)s[A]+B[A], nT[Ag]=r~]g[A], r /~ [AP]=- r /~[A] ,  (4) 

under gauge- and parity-transformations 

Ag(x )=g- l ( x ) [A~(x ) - i~]g (x ) ,  ~g(x)=g-l(x)t~(x),  g (x)EG=U(n) ,  (5) 

(AP)u(x)=(Ao,-A1,A 2 ..... AD_I)(xP), ~P(x) =--i'Yl ~b(xP), xP---(xO,--xl,x2 .... ,xD-1).  (6) 
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The appearance of r/~g [A] in (1) represents the general form of PVA unless (a)Nf = even or/and (b) the homotopy 
group rrD(U(n)) v e Zi the group of integers (wtuch is true forD > 2n, see e.g. ref. [10]. In these latter cases (a), 
(b) one can choose the counterterm Sct[A ] (local functional ofA u accounting for the renormalization ambiguity) 
in the form Sct = izr(-1)( D- 1)/2 w(D)chS [A] such that PVAs in (1) are avoided. In (4) WC(Ch) s [A] denotes the well- 
known odd-dimensional Chern-Simons secondary class [11 ], in particular, in D = 3: 

W(3)ChS [A] = - (16~2)- l  euvx f d3x tr[AuFx(A ) - i ~AuA~A ~ ] , (7) 

= w(D)chs kl , W  stAP] [A] , (8) 

nD =3 [g] = --(247r2)-1 euvx fa3x tr [(g- 1 ~ug ) (g- 1 aug ) (g- 1 axg)] ' (9) 

where n D[g] (element of rrD(U(n)) = Z for all odd D < 2n, [10] ) ~s the topological charge ofg(x).  B [A ] in (4) 
denotes a piece-wise constant functional ofAu, whose values are even integers: 

6 B [A]/6 Aa~(x) = 0 for all Au(x ) whose 7(A) do not possess zero modes, 

B[Ag] =B[A] +(--1)(D-1)/22nD~], BIA P] = - B [ A ] .  (10) 

In fact, B [A ] may be associated to twice the index of an appropriate D + 1 = even-dimensional Dirac operator [9]. 
The aim of the present note is to find generalizations of (1)-(4),  (9), (10) to the case o fD  = 3 supersymmetric 

gauge theories. 

2. The (euclidean) superspace action o f D  = 3 (massive) scalar superfields (b(x, 0) in an external (not quantized) 
gagge superfield s~a(x, 0) reads [12] : 

s [~, ~ ] = fd3x d20 (1)* [V2(_~ ) - lm] cb = f d 3 x  D2((I) * [V2(.q¢ ) - im] (b)[o= 0 (11) 

1 i - * ~ a ' "  1 i~-aX ~ (11')  

(I)(*)(x, 0) = ~o(*)(x) + Oa(~)a(x) + 6(O)F(*)(x), ~ .(x,O) = Xa(X ) + iA i~(x)O [3 + b(x)O + 6(O)~a(x ) = s~aa(x,o)Ta. 

(11'" '")  
The component-field action (11 ') is written in the Wess-Zumino gauge [Xa = b = 0 in (11 "')] and after elimi- 
nating the auxiliary fields F(*). Also, the standard spinor- and superspace notations are used: 

D = 3100 a + i0~0 ~, 7 ~ ( ~ )  = D  + i _ ~ ,  a = 1,2, V~3(A) = ~ + 1At~, 

X 2 - 1 XaXa ' X a = Co~#X#, Xa _ _i(X3,  )a , CO = _Cal3 = (o2)at3, 71,2 = 1°1,2' 

6(0) 

The action (11) is invariant under superfield gauge transformations: 

• ~(x,O) = cJ(x,O)~(x,O),  ~ ~(x,O) = co+(x,O)[~.(x,O) - tO ]co(x,0), 

co(+)(x,O) = g(+)(x) + Oa(?~(x) + 6(O)S(+)(x), ¢o+(x, 0) = co-l(x,  0), co(x, 0) E U(n), 

3, 0 = io3, 

(12) 
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and under parity-transformation for m = 0: 

• P(x, 0) = qb(x P , 0a),  -q~ P'a(x, 0) = (o 1)'~/3 ~ #(x a , 0P), 0 P'a - (o 1 )a/30#. (13) 

The mass term - i m  fd20 cb*d~ changes sign under (13). 
As in the usual theories, the heat kernel representation of  superfield propagators (for D = 4 superspace, see ref. 

[13] ) will prove very useful. Kernels of  superspace differential operators ~ (7=), ~P ( ) being an arbitrary poly- 
nomial, are def'med as ~ ( 7 a )  (x, 0 ;x ' ,  0') = ~(7~,)6(3)(x - x ' )6(0 - 0'). In particular, let us introduce the opera- 
tor 7 4 --- [72(.q~)] 2 

7 4 = - [ a  u + ir 'u(~)]  [a u + iru(s~)]  + iW~(s~)V~(s~) ,  

r~ocs~) = - i  [FCs~)3, u ] s 0 = - ½ i [Da~  ~ + Dt3s~ a + i (M a,  MO}], 

Wa(-~ ) = ~ D~D a _ ~  + ~ i[sff ~, n~  _~,1 - 1 [.~ ~, ( sift, . ~ ) ] ,  

the latter being the super gauge field strength. From the "heat"  equation (b/Or) cK = 7 4 9( the following asymp- 
totic expansion for the heat kernel cK = exp ( - r 7  4) of  7 4 may be deduced: 

exp (--~'7 4) (x, O;x', 0') = ~ 7"(1-4)/4(2rr)-4 fd3~ exp ( i t  -1/2 ~(x - x ' ) )  
l=O 

X fidX e-hR_3_l/2(x, 0;X, ~, D)6(r-1/4(O - 0')). (14) 
F 

Unless explicitly stated, we shall assume that 7 4 = 74(5ri~) does not possess "zero modes", i.e. that 7 4 is invert- 
ible. The integration contour F in (14) is shown in fig. 1. R_3_i/2 are determined recursively: 

(L!)-l  f d20,, L a~ Ol_k/2(x, 0; ~., ~, O)~i(0 - 0 ") 21Ll+k+l=p=O,l,2 .... 

X (--iax)L R_3_l/2(x , 0"; X, ~,B)b(O" -- 0') = 60pS(O -- 0'), (15) 

L = (L 1, ..., Lk) (multiindex), L! = L 1 ! -.. Lk!, m terms of  the superspace symbol o of  the operator 7 4 - ~k: 

[7 4 - -  X] 8 ( 3 ) ( x  - x ' ) 8 ( O  - -  0 ') = ( 2 . )  - 3  fd3  o ; x ,  ~, B) (o - o ' ) ,  

4 

O(x,O;~k, ~,B) = ~ Crl_l/2(x,O;~k,~,B), 

Ol_I/2(x,O;p2X, p~,D)6(#-I/2(O --O'))=pl-I/2Ol_l/2(x,O;;L~,D)6(O --0'), P > 0 ,  (16) 

r 

Fig. 1. Integranon contour in (14), (25) 
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O1 =~2--~,  O1/2 = 0, O0 = 2~gP~(-¢4), O_l/2=iWa(x,O)~, 

o_1 = - i  ~ F ( M )  + F ( s ~ ) F ~ ( ~ )  - I¢ ~ ~ a "  (16 cont'd) 

In (14)-(16)D a = ~/~0 '~ - 0g~a~, where a = _ _ ~~ -i(~u'yu)c'O, acts only on the Grassmann 6-functions. R 3 l/2 are 
rational functions of ~, ~ and polynommls in Da of at most second degree (due to {Da, D~} = 2 i ~ ) .  R_3_1/2 
satisfy the homogeneity relaUons (0 > 0): 

R 3_l/2(x, O; p2~t, p~,D)6(p-1/2(O - 0')) = p-3-1/2 R_3_l/2(x, 0; )t, ~,D)6(0 - 0'). (17) 

The formal sum 

oo 

R(x, 0; X, ~, D)6(O - 0 ') = ~ R _3_1/2(X, 0 ; ~,, ~, O)~(O -- 0 ') (18) 

may be considered as a superspace symbol for the resolvent [V 4 -- ~k] - 1 .  Let us note the complete similarity of 
(14)-(18) to the formulas for the ordinary heat kernel expansions within the symbol calculus of pseudodifferen- 
tial operators (e.g. ref. [14]). 

3. The one-loop effective action for massless cI,(x, 0), 

exp (--Ser f [ s~ ] ) = fc~9 q~ c-/) qs* exp (---S [alp, ~ ] ) = exp (-sTr R In [V2(M)] ), (19) 

must be ultravioletly regularized so as to preserve invariance under (12). A standard choice is the Pauli-Villars 
regularization, 

(sTr R In [V2(M)])ren = hm {sTr R In [72(M)] - sTr R In [V2(M) - iM] } + Set [M ], (20) 
g--*~ 

where Set [M ] (a local functional of M a) is a counterterm accounting for the renormalization ambiguity. Clearly, 
Set [M ] should be invariant under (12) but it need not be parity-invariant, since parity (13) is explicitly broken 
by Pauli--Villars regularizataon. 

It is simpler instead of (20) to analyse the renormalized expression for the induced supercurrent: 

J(a)(x, 0) = i(~b*TaV • -- (aP~a)*Ta~) = 2 [6[8.~a'a(x, 0)1 sTr R In [V2(~ )]. (21) 

Inserting (20) into (21) and using the heat kernel representation we get: 

[ja(x 0~l ten- lim 2itr{TaV~,V2[(V4) -1 (V4+M2)-I](x,O;x,O)} 
12 ~ ' <  ~ / J  - -  

M ~  

-- lim 2Mtr[TaVa(V 4 +M2)- l (x ,  O;x, 0)] + 216/6 M'~a(x, O)]Sct[S~ ] (22) 
M - - .  ~ ,  

/ , 
= lim 2i d r (1-e - rM2) t r [Ta(7of f2e  -rV )(x,O;x,O)] 

M--*~ 0 

- -  lim 2M y dre-r~tr[Ta(ve-rV4)(x ,O;x,O)]  +2[~/~,alS~t[~l. (23) 
M ~  0 

Now one can easily check by means of (14)-(16) that no ultraviolet dwergences (i.e. singularities of the form 
O(r-k), k/> 1) appear in the first term in (23) when the regularization is removed. Also, this term is parity-normal 
[cf. (13)]: 
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[ja(x, 0)] (normal) = 2i ; dr tr [Ta(Vcfi72 e -rV4) (x, O;x, 0)] = [~/~ ~r~ c~a(x ' 0)] sTr R In [V4], 
0 

(24) 

whereas the second term in (23) is parity-anomalous. For the latter, accounting for (14)-(I 6), we get: 

[ja(x, 0)] (PVA) = _ lim 2/]4 -1 f do e -°  tr [Ta(V e -  (°/Ma)74) (x, 0 ;x, 0)] 
0 

= -  g-~*olim 2 ; dpp-l/2e-O((2~r)-4fd3~ fidXe-Xtr[Ta~R_3_3/2(x,O;X,~,~)6(O- 0')]0=0, 
0 r 

+ O((p/M2) 5/2) (s >1 1)) (25) 

= --i(4~r) -1 tr [T a Wa(x, 0)]. 

Note that ja(PVA) may also be represented in the form ot 

[Ja(x,O)](PVA)=iTr[6/6s~°~'a(x,O)]rl~USY [~7~], r/~r~SY[_¢~] =-- ; dr(Trr)-l/2sTrR [(-V2)e-rV4], (26) 

0 
which follows from the operator identity 

~(Tr [P exp (- t2p2)])  ; (d/d0 (t Tr [(~P)exp (-t2e2)l). 
From (26) and (25) we obtain: 

r/SUSY = 2W~S SY [s~ ] c/O [.o~ ] (27) V2 [~] + , 

SUSY _(16rr2l-lfd3xd20 tr {s~aWa(s~) +_ ~ ~ a  [~t~, Fa¢(.~)] } WCh S [sr~] = 

= W(~h) S [.41 -- (32~r2)- l fd3x tr(XaXa) (28) 

(in the Wess-Zumino gauge), where the last expression is nothing but the well-known D = 3 supersymmetric mass 
term for ~ a  [12] (recall that [ 8 / 6 ~ ]  WSh UsY [ ~ ]  = --(87r2) -1 tr[TaW~(~)]). From (26), (28) and (12), (13) 
it follows that: 

~t~ ~ wSUSYI,,Cto] SUSY -, SY[~to]=~/  SV[sff] ' "ChS t~.L J=Wch s [~1+c~[6o ] ,  (29) 

rI~USY [g{ p] = SUSY- -,  wSUS Y p] wSUS v 
--1"/V2 ['¢~] ChS [St{ =--  ChS [ -~] '  (30) 

where c~ [w] is an integer and it may be viewed as superspace topological charge of 6o(x, 0) (12) [cf. (9)] : 

c~ [~] = _i(48rr2)-1 fd3x d20 tr [(6o-lDa6o) (6o-lD#w) (co -1 at~#6o)] = n D =3 [g]' (31) 

i.e. only the bosonic component of 6o(x, 0) contributes. As a consequence of (29), (30) we have for c/3 [ ~  ] in 
(27): 

(8[8~'~a)qfl[sff] =0  f o r a l l ~  whose vE(~)isinvertible, 

~ [ A ' ~ ]  = ~ [ ~ 1  - 2 ~ [ ~ ] ,  ~ [ ~ P ]  = - ~ [ ~ ] ,  (32) 

i.e. qfl [ ~ ]  is a piece-wise constar/t functional of ~ ~ whose values are even integers,just as in (10). In fact, com- 
paring (4), (7)--(10) with (26)--(32) one easily finds: 
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c/O[M l =B[A] ,  (33) 

i.e. only the zero modes of the ordinary Dirac operator ~(A), contained in 72(M), contribute to the jumps (by 
+-2) of q3 [ ~ ] .  

Collecting (22)-(26) and assuming that there are Nf t> 1 flavors [i.e. e~/(x, 0) ,!  = 1 ..... Nf] we arrive at the 
final expression for (20): 

1 • . T  S U S Y  Nf(STrRin[V2])ren=Nf~(SWrRln[V4])+517rlvf~?V2 [s~] + NfSct [M ] (34) 

=Nf(½STrRin[V4])+ l i r rNfq~[M] • SUSY + 17rNfWch S [ ~ ]  + NfSct [~  ]. (34') 

Now we have the following two alternatives concerning PVA in (34): 
(i) If either G = U(1) (then cr~ [co] = n [g] = 0) or i fNf  = even for G = U(n), n >/2, we can choose: Sct [M ] 

_ i_wsusY r-~l ,i.e. 
- - -  n ChS l-~tI 

Uf(sTr R In [V2 ] )ren = Xf(½ sTr R In IV 4 ] ) + ~ nrXf c'B [s~], (35) 

and thus PVA m (20), (34) are eliminated, since ~ ~rNfCB [ ~  ] = 0 (mod 2rr). 
(ii) If G = U(n), n >/2, and Nf = odd simultaneously, then the choice (35) while eliminating PVA, breaks gauge 

invariance [cf. (32)]. Hence PVAs are unavoidable in this case. 
Conclusions (i), (ii) parallel those in the non-supersymmetric case [1,8]. 
In terms of component fields (11 ' -11" )  in the Wess-Zumino gauge, eq. (34), accounting for (1), (4), (28), 

(33), reads: 

Nf(TrR ln[AB] -- TrR ln[--i]~])ren =Nf(½ TrR In[A 2 ] --½"11rr/AB [A, 3`]) 

- Nf(½ Tr R In [~2] _ ½ ilrr/~ [A] ) + NfSet  [A, 3`], (36) 

A B = A B [A, 3`] (x, x') = - V u ( A ) V u ( A ) f ( x  - x ' )  - ¼ 3`a(x)[~(A)-I ] aO(x, x')3`¢(x'), 

[A, 3,] = (16r rZ) - t fd3x  tr(Xa3`a), (36') 
r/a B 

or, m an eqmvalent form: 

Nf(Tr R In [-Vu(A ) Vu(A)] - Tr R In [--iAF] )ren = Nf½ Tr R In [(-Tu(A)Vu(A)) 2 ] 

- Nf(½ Tr R In [A 2 ] - ~ ilrna v[A, 3`1) + Set [A, 3`], 

A F ---- A F [A, 3`] (x,x')  = V~(A)e#5(x - x ' )  -- ¼3`o~(x)[-VI.L(A)Vta(A)] - l(x,x ')3`t3(x') ,  

r/z~ F [A, 3`] = 772SUSYrl at" ] = 2W (3)ChS L[A] +B[A] - ( 1 6 r t 2 )  - 1  fd3x tr(3`a3` ). 

(37) 

(37') 

As a byproduct from (36), (37) one gets the r~-invariants (36'), (37') of the pseudodifferential (not ordinary dif- 
ferential) operators AB, A F in terms of the 7/-invariant (27) of the superdifferential operator V2(~) .  On the other 
hand, direct computation of r/,x , 7/a from expressions of the type (3) would be very hard. 

F 
Finally, let us stress the compete analogy among superspace formulas (34), (26)-(32) and the corresponding 

ordinary ones (1)-(4),  (7)-(10).  In particular, an application of supersymmetry to the computation of the spec- 
tral asymmetry of pseudodifferential operators is found. 
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We are very indebted to A.M. Polyakov and E.S. Sokatchev for many illuminating discussions. 
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